GERAÇÃO HELIOTÉRMICA
PRINCÍPIOS E TECNOLOGIAS

Diego C Malagueta

Equipe CRESESB/CEPEL
http://www.cepel.br/cresesb
crese@cepel.br

Rio de Janeiro
Julho/2012
SUMÁRIO

Lista de Figuras .. iii
Lista de Tabelas .. iv
HISTÓRICO DA ENERGIA SOLAR ... 5
CAPÍTULO 1 – COLETORES SOLARES ... 12
 1.1 – CONCENTRADORES CILÍNDRICOS-PARABÓLICOS 14
 1.1.1 – RECEPTOR ... 18
 1.1.2 – MECANISMOS DE RASTREAMENTO ... 18
 1.2 – COLETOR FRESNEL .. 19
 1.3 – DISCO PARABÓLICO .. 20
 1.4 – TORRE CENTRAL .. 22
CAPÍTULO 2 – SISTEMAS TÉRMICOS SOLARES .. 25
CAPÍTULO 3 – PLANTAS SOLARES NO MUNDO ... 35
CAPÍTULO 4 – CUSTOS E PERSPECTIVAS ... 38
REFERÊNCIAS .. 41
Lista de Figuras

Figura 1 – Fornalha solar de Lavoisier (1774) ... 6
Figura 2 – Coletor parabólico de uma impressora à energia solar (Paris, 1882)............ 7
Figura 3 – Concentrador parabólico de John Ericsson (1870) 7
Figura 4 – Planta de bombeamento de águas do Nilo (Egito, 1913) 9
Figura 5 – Planta Solar de Almería (PSA) ... 10
Figura 6 – Concentrador parabólico ... 14
Figura 7 – Concentrador parabólico ... 15
Figura 8 – Desenho esquemático da concentração da radiação em um concentrador parabólico Fonte: SOLARPACES (2011) apud LODI (2011) 15
Figura 9 – Rastreamento do sol no sentido leste-oeste .. 16
Figura 10 – Desenho esquemático do refletor linear Fresnel 20
Figura 11 – Refletor Fresnel ... 20
Figura 12 – Esboço de um concentrador de disco parabólico 21
Figura 13 – Foto de um concentrador de disco parabólico 21
Figura 14 – Esboço de uma torre de concentração .. 23
Figura 15 – Foto das torres de concentração PS10 e PS20 na Espanha 24
Figura 16 – Sistema solar sem e com armazenamento ... 26
Figura 17 – Diferentes arranjos para integrar um sistema solar a um sistema convencional de calor ... 26
Figura 18 – Sistema solar de geração de electricidade com armazenamento de calor..... 28
Figura 19 – Sistema solar de geração de electricidade com caldeira auxiliar 28
Figura 20 – Sistema solar de geração de electricidade (geração de vapor diretamente nos coletores) .. 29
Figura 21 – Torre de concentração de receptor aberto (fluído aquecido: ar) 31
Figura 22 – Torre de concentração de receptor de volume fechado e pressurizado (fluído aquecido: ar) ... 31
Figura 23 – Planta solar para operação em carga intermediária 32
Figura 24 – Planta solar para operação em carga intermediária atrasada 33
Figura 25 – Planta solar para operação na base ... 33
Figura 26 – Planta solar para operação no pico .. 34
Figura 27 - (a) Custo nivelado em função do FC e do custo de investimento; (b) Custo nivelado em função do FC e da taxa de desconto .. 38
Figura 28 - Expectativas de queda no custo nivelado de CSP em função de economias de escala, aprimoramento da tecnologia e ganhos de eficiência 39
Lista de Tabelas

Tabela 1 – Classificação dos coletores solares por graus de rastreamento 12
Tabela 2 – Características de diferentes tecnologias CSP .. 13
Tabela 3 – Características das 9 plantas SEGS da Califórnia 17
Tabela 4 – Dados do coletor IST .. 18
Tabela 5 – Características do modelo EuroDish .. 22
Tabela 6 – Plantas de concentradores de disco parabólico em operação no mundo 36
Tabela 7 – Plantas Fresnel em operação no mundo.. 36
Tabela 8 – Plantas de concentradores parabólicos em operação no mundo 36
Tabela 9 – Plantas de torre de conentração em operação no mundo 37
HISTÓRICO DA ENERGIA SOLAR

De acordo com KALOGIROU (2009), o uso da energia solar em grande porte mais antigo é creditado, embora não comprovado, a Arquimedes (282 a 212 a.C.), que teria queimado a frota romana na Baía de Syracuse (hoje pertencente a Itália) concentrando raios solares em um foco a ponto de aquecê-los até pegarem fogo. O fato foi referenciado por diversos autores entre 100 a.C. e 1.100 d.C. e no livro *Optics Vitelio*, do matemático polonês Vitelio. O aparelho usado por Arquimedes foi descrito como um vidro composto com 24 espelhos que convergiam para um único ponto focal, enquanto alguns historiadores acreditam que Arquimedes teria utilizado escudos de soldados ao invés de espelhos em função da tecnologia de manufatura de vidros creditada àquela época. Há relatos de que Arquimedes teria escrito um livro (*On Burning Mirrors*), mas nenhuma cópia sobreviveu. Durante o período Bizantino, Proclus repetiu o suposto experimento de Arquimedes e queimou a frota inimiga em Constantinopla.

Já no século XVIII, na Europa e Oriente Médio, começaram a ser desenvolvidas fornalhas solares, cuja aplicação era a fundição de metais, principalmente ferro e cobre (LODI, 2011). De acordo com KALOGIROU (2009), uma das primeiras aplicações em larga escala foi a fornalha solar desenvolvida por Lavoisier em 1774 (Figura 1). Esta fornalha possuía uma lente de 1,32m e outra secundária de 0,2m e foi capaz de atingir temperaturas de 1.750°C.
Durante o século XIX surgiram as primeiras tentativas de gerar vapor (à baixa pressão) a partir da radiação solar. As primeiras máquinas a vapor movidas à energia solar teriam sido construídas por Augusto Mouchot de 1864 a 1878 na Europa e norte da África (RAGHEB, 2011 apud LODI, 2011).

Uma de suas máquinas, uma impressora movida à energia solar foi apresentada em uma exposição internacional em Paris em 1882 e imprimia 500 cópias por hora (Figura 2), mas foi considerada pelo governo francês cara demais para ser fabricada em larga escala (RAGHEB, 2011 apud LODI, 2011).
GERAÇÃO HELIOTÉRMICA

De acordo com JORDAN e IBELE (1956) *apud* KALOGIROU (2009), o desenvolvimento de novos sistemas teve continuidade nos EUA, onde um engenheiro, Capitão John Ericsson, construiu o primeiro motor a vapor movido diretamente à energia solar. O Capitão construiu ao todo oito sistemas de aquecimento direto de água ou ar como fluidos de trabalho em cilindros-parabólicos (Figura 3).

Figura 2 – Coletor parabólico de uma impressora à energia solar (Paris, 1882)
Fonte: KALOGIROU (2009)

Figura 3 – Concentrador parabólico de John Ericsson (1870)

Em 1912, Frank Shuman e Charles Vernon Boys construíram uma planta de bombeamento de água próximo ao Rio Nilo, no Egito (à época a maior do mundo) (uma foto da planta é apresentada na Figura 4). O campo solar da planta ocupava cerca de 1.200m², era composta por cilindros parabólicos de 62m de comprimento e 4,5m de largura, a água era aquecida até virar vapor diretamente nos receptores e operava uma bomba com vazão máxima de 22,7m³ de água por minuto (potência de 75kW) (RAGHEB, 2011 *apud* LODI, 2011).

Apesar de o projeto ter sido bem sucedido, a planta foi desativada em 1915 em função da 1ª Guerra Mundial, que se apropriou do material da planta. Ademais, após a guerra, grandes descobertas de campos de petróleo no Oriente Médio e na Venezuela, contribuíram para a expansão do setor petrolífero e em paralelo para um esquecimento da energia solar (LODI, 2011).
Durante a década de 1970, ocorreram o primeiro e o segundo choques do petróleo, em 1973 e 1978 respectivamente (YERGIN e HOBBS, 2005). Essa crise de abastecimento estimulou no mundo o incentivo de diversas fontes alternativas de energia e não por coincidência, o desenvolvimento dos atuais modelos de coletores solares começou nos EUA na década de 1970 coordenados pelo DOE.

A primeira planta solar comercial foi instalada no Novo México em 1979 pelo laboratório Sandia (Sandia National Laboratory), composta por coletores cilindro parabólicos que atingiam temperaturas de até 500°C e utilizada inicialmente para calor de processos industriais (RAGHEB, 2011 apud LODI, 2011).

Os grandes investimentos em P&D no setor na Europa também surgiram na década de 1970. A Plataforma Solar de Almería (PSA), vide Figura 5, pertencente ao CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) sob o Ministerio de Ciencia e Innovación, é o maior centro de P&D em concentradores solares da Europa e situa-se no Deserto de Tabernas, em Almería, Espanha. A PSA foi fundada em 1977 e em 1981 forneceu pela 1ª vez à rede energia elétrica proveniente de energia solar térmica através do projeto de demonstração chamado SSPS/DCS (Small Solar Power Systems/Distributed Collector System) constituído de dois campos solares de cilindro parabólicos com uma área de absorção de 7.602m². Em 1987, o centro de

O CIEMAT participa em parcerias dos consórcios de plantas solares na Espanha, como no caso da PS10\(^1\), a primeira planta de torre de concentração a operar comercialmente no mundo (em 2007) (MINISTERIO DE CIENCIA E INNOVACIÓN, 2011).

![Figura 5 – Planta Solar de Almería (PSA)
Fonte: MINISTERIO DE CIENCIA E INNOVACIÓN (2011)](image)

Em 1982 a companhia *Luz International Limited* (Luz) desenvolveu coletores solares cilindro parabólicos e foi responsável pela primeira planta comercial de eletricidade do mundo, a SEGS I (de 14MW), que entrou com operação em 1983. Em seguida foram mais oito plantas, as SEGS II a IX, com capacidades de 30 a 80MW cada (LODI, 2011). Entretanto, em 1991 a Luz falhou e as plantas foram revendidas separadamente para diferentes grupos de investidores e todas elas continuam em operação (RAGHEB, 2011 *apud* LODI, 2011).

Em 1986, o excesso de capacidade ociosa da indústria petrolífera levou ao contra-choque do petróleo, quando o preço do barril de petróleo despencou a menos de 10US$ (MAUGERI, 2004). A abundância de petróleo barato diminuiu o investimento e o ritmo de desenvolvimento de diversas fontes alternativas de energia.

\(^1\) Participantes: Solúcar, Inabensa, CIEMAT, DLR, Fichtner (MINISTERIO DE CIENCIA E INNOVACIÓN, 2011).
Assim, nos EUA, a década de 1990 apresentou uma queda de investimentos no setor, o modelo federal que incentivou o surgimento das SEGS na Califórnia, o PURPA, entrou em decadência e o cenário nos EUA só voltou a ficar favorável à energia solar com a adoção de novas políticas de incentivo em diversos Estados do país adotadas nos anos 2000, em sua maioria RPS (Renewable Portfolio Standard). No caso da Califórnia, o modelo foi adotado a partir de 2002 (TAYLOR, 2008). O RPS é um modelo que se baseia em um mecanismo econômico no qual é determinada uma cota de energia renovável (ou de uma fonte específica) e assim o equilíbrio de mercado levaria ao preço de equilíbrio (DUTRA, 2007).

Outro marco para o setor no mundo foram as leis de incentivo espanholas, iniciadas em 1998 a partir do Decreto Real D.R. 2818/1998 que propôs os procedimentos administrativos e as condições para beneficiar plantas de energias renováveis e fontes alternativas, que passaram a receber tarifação diferenciada e acima do valor de mercado (tarifação feed-in) como forma de incentivo (MINISTERIO DE INDUSTRIA Y ENERGÍA, 1998 e GONZÁLEZ, 2008).

O conhecimento adquirido em P&D ao longo destes anos e o aprimoramento da tecnologia, bem como incentivos econômicos, contribuem para que EUA e Espanha sejam hoje em dia os países referências no setor de energia solar térmica de alta potência.
CAPÍTULO 1 – COLETORES SOLARES

Coletores solares são trocadores de calor que transformam radiação solar em calor. O coletor capta a radiação solar, a converte em calor, e transfere esse calor para um fluido (ar, água ou óleo em geral) (KALOGIROU, 2009).

Os coletores podem ser basicamente de dois tipos: não-concentradores e concentradores. Os coletores não concentradores possuem a mesma área de abertura (área para interceptação e absorção da radiação) e são aplicáveis para sistemas que necessitem de baixa temperatura. Em aplicações que demandem temperaturas mais elevadas, são mais adequados os concentradores solares, que possuem em geral uma superfície refletora (em alguns modelos são utilizadas lentes) que direcionam a radiação direta a um foco, onde há um receptor pelo qual escoa o fluido absorvedor de calor (KALOGIROU, 2009).

Os coletores solares ainda podem ser classificados em estacionários ou rastreadores. Dentre os rastreadores, os coletores podem rastrear em um eixo ou em dois eixos. Uma listagem com os principais modelos, bem como algumas características de cada um, é apresentada na Tabela 1 (KALOGIROU, 2009).

Tabela 1 – Classificação dos coletores solares por graus de rastreamento

GERAÇÃO HELIOTÉRMICA - 12
Os coletores solares com concentração podem ser utilizados em diferentes sistemas para geração de energia elétrica. Os principais tipos de sistema encontram-se listados na Tabela 2.

Tabela 2 – Características de diferentes tecnologias CSP

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>Faixa de capacidade indicada (MW)</th>
<th>Taxa de concentração</th>
<th>Eficiência solar-elétrica (%)</th>
<th>Área requerida (m²/kW)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parabólico</td>
<td>10-200</td>
<td>70-80</td>
<td>10-15</td>
<td>18</td>
</tr>
<tr>
<td>Fresnel</td>
<td>10-200</td>
<td>25-100</td>
<td>9-11</td>
<td>-</td>
</tr>
<tr>
<td>Torre</td>
<td>10-150</td>
<td>300-1000</td>
<td>8-10</td>
<td>21</td>
</tr>
<tr>
<td>Disco</td>
<td>0,01-0,4</td>
<td>1000-3000</td>
<td>16-18</td>
<td>20</td>
</tr>
</tbody>
</table>

A taxa de concentração é a razão entre a área de abertura do coletor (não a área de superfície dos espelhos, mas sim a área do plano perpendicular ao raio incidente) sobre a área de absorção do receptor. O Concentrador reflete a radiação solar direta que incide em uma grande área em uma área menor (KALOGIROU, 2009).
1.1 – CONCENTRADORES CILÍNDRICOS-PARABÓLICOS

Os coletores cilíndricos parabólicos são revestidos por um material refletor em formato parabólico. Ao longo da linha de foco do refletor parabólico é colocado um tubo metálico preto, coberto por um tubo de vidro para evitar perdas de calor, denominado receptor (KALOGIROU, 2009). À guisa de exemplificação, vide fotos nas Figura 6 e Figura 7.

Figura 6 – Concentrador parabólico
Fonte: DARKOPTIMISM (2011)
Quando a parábola aponta para o sol, os raios diretos do sol são refletidos pela superfície e concentrados no receptor (Figura 8). A radiação concentrada aquece o fluido que circula internamente no tubo. (KALOGIROU, 2009)

Fonte: RENEWABLE POWER NEWS (2009)
É comum serem construídos com sistema de rastreamento de um eixo, podendo ser orientados no sentido leste-oeste com rastreamento do sol de norte a sul, ou no sentido norte-sul rastreando o sol de leste a oeste (esboço na Figura 9) (KALOGIROU, 2009).

- sentido leste-oeste: tem como vantagens o fato de mover-se pouco ao longo de todo o dia e de sempre ficar diretamente voltado para o sol ao meio-dia. Em contrapartida, tem uma performance reduzida no início do dia e no fim da tarde, devido aos maiores ângulos de incidência dos raios solares sobre a superfície coletora.

- sentido norte-sul: tem os maiores ângulos de incidência durante o meio-dia e consequentemente as maiores perdas de calor nessa fase do dia, enquanto aponta mais diretamente para o sol no início do dia e no fim da tarde.

Durante o período de um ano, o coletor direcionado no sentido norte-sul absorve um pouco mais de energia que um orientado leste-oeste. Entretanto, o coletor norte-sul coleta mais calor no verão e menos no inverno que um leste-oeste, que possui uma produção de energia mais uniforme ao longo do ano. Portanto, a escolha da orientação depende também da aplicação e de quando há mais necessidade de energia, ou seja, se a demanda sofre significativa variação em função da estação do ano, inverno ou verão, ou se varia mais durante as horas do dia. (KALOGIROU, 2009)

Figura 9 – Rastreamento do sol no sentido leste-oeste
Fonte: ABS (2010)
Os concentradores parabólicos são a mais madura tecnologia solar de geração de calor e permitem o aquecimento de fluidos a temperaturas de até 400ºC. A energia deste fluido pode ser usada para geração elétrica ou para calor de processo (KALOGIROU, 2009).

<table>
<thead>
<tr>
<th>Planta</th>
<th>Ano de operação</th>
<th>Potência Líquida (MWe)</th>
<th>Temp. de saída do fluido (ºC)</th>
<th>Área do Campo Solar (mil m²)</th>
<th>Eficiência da turbina solar (%)</th>
<th>Eficiência da turbina fóssil (%)</th>
<th>Produção Anual (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEGS I</td>
<td>1985</td>
<td>13,8</td>
<td>307</td>
<td>83</td>
<td>31,5</td>
<td>-</td>
<td>30.100</td>
</tr>
<tr>
<td>SEGS II</td>
<td>1986</td>
<td>30</td>
<td>316</td>
<td>190</td>
<td>29,4</td>
<td>37,3</td>
<td>80.500</td>
</tr>
<tr>
<td>SEGS III</td>
<td>1987</td>
<td>30</td>
<td>349</td>
<td>230</td>
<td>30,6</td>
<td>37,4</td>
<td>92.780</td>
</tr>
<tr>
<td>SEGS IV</td>
<td>1987</td>
<td>30</td>
<td>349</td>
<td>230</td>
<td>30,6</td>
<td>37,4</td>
<td>92.780</td>
</tr>
<tr>
<td>SEGS V</td>
<td>1988</td>
<td>30</td>
<td>349</td>
<td>250</td>
<td>30,6</td>
<td>37,4</td>
<td>91.820</td>
</tr>
<tr>
<td>SEGS VI</td>
<td>1989</td>
<td>30</td>
<td>390</td>
<td>188</td>
<td>37,5</td>
<td>39,5</td>
<td>90.850</td>
</tr>
<tr>
<td>SEGS VII</td>
<td>1989</td>
<td>30</td>
<td>390</td>
<td>194</td>
<td>37,5</td>
<td>39,5</td>
<td>92.646</td>
</tr>
<tr>
<td>SEGS VIII</td>
<td>1990</td>
<td>80</td>
<td>390</td>
<td>464</td>
<td>37,6</td>
<td>37,6</td>
<td>252.750</td>
</tr>
<tr>
<td>SEGS IX</td>
<td>1991</td>
<td>80</td>
<td>390</td>
<td>484</td>
<td>37,6</td>
<td>37,6</td>
<td>256.125</td>
</tr>
</tbody>
</table>

Fonte: KALOGIROU (2009)

A EuroTrough desenvolveu um tipo de coletor mais moderno que os modelos LS-2 e LS-3 usados nas SEGS, com menor peso e sujeito a menores deformações devido ao peso morto e às cargas consequentes do vento. Isso reduz os esforços de torção e flexão da estrutura durante a operação, o que acarreta em melhor performance ótica e consequentemente maior eficiência. O peso da estrutura de aço é cerca de 14% menor que o modelo LS-3 (KALOGIROU, 2009).

A Tabela 4 apresenta dados de um modelo de concentrador parabólico construído pela Industrial Solar Technology (IST) Corporation. O coletor parabólico IST foi testado e avaliado no Sandia National Laboratory e no German Aerospace Centre para eficiência e durabilidade (KALOGIROU, 2009).
Tabela 4 – Dados do coletor IST

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor/tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ângulo de abertura do coletor</td>
<td>70°</td>
</tr>
<tr>
<td>Superfície refletiva</td>
<td>Acrílica prateada</td>
</tr>
<tr>
<td>Material do receptor</td>
<td>Aço</td>
</tr>
<tr>
<td>Abertura do coletor</td>
<td>2,3m</td>
</tr>
<tr>
<td>Tratamento da superfície do receptor</td>
<td>Níquel escurecido altamente seletivo</td>
</tr>
<tr>
<td>Absorbância</td>
<td>0,97</td>
</tr>
<tr>
<td>Emitância (80°C)</td>
<td>0,18</td>
</tr>
<tr>
<td>Transmitância do vidro de revestimento</td>
<td>0,96</td>
</tr>
<tr>
<td>Diâmetro externo do absorvedor</td>
<td>50,8mm</td>
</tr>
<tr>
<td>Precisão do mecanismo de rastreamento</td>
<td>0,05°</td>
</tr>
<tr>
<td>Orientação do coletor</td>
<td>Eixo N-S</td>
</tr>
<tr>
<td>Modo de rastreamento</td>
<td>Horizontal leste-oeste</td>
</tr>
</tbody>
</table>

Fonte: KALOGIROU (2009)

1.1.1 – RECEPTOR

O receptor é instalado na linha de foco dos concentradores e costuma ter de 25 a 150 metros de comprimento. Sua superfície é revestida por uma cobertura com alta absorbância a irradiação solar e baixa emitância para irradiação térmica (infravermelho) (KALOGIROU, 2009).

Em geral uma cobertura de vidro é usada ao redor do receptor para reduzir as perdas por convecção do receptor para o ar ambiente, reduzindo assim o coeficiente de perda de calor. Uma desvantagem é que a luz refletida pelo coletor tem de atravessar o vidro, adicionando assim uma transmitância (de aproximadamente 0,9 quando o vidro está limpo). Outra medida comum para redução das perdas por convecção é manter um vácuo no espaço entre o vidro e o tubo receptor (KALOGIROU, 2009).

1.1.2 – MECANISMOS DE RASTREAMENTO

O mecanismo de rastreamento deve ser confiável dentro de um limite de acuidade para rastrear o sol ao longo do dia, inclusive durante dias nublados intermitentes, e retornar à posição original ao fim do dia ou durante a noite (KALOGIROU, 2009).
Além disso, o mesmo sistema também é utilizado como mecanismo de proteção, desviando o concentrador do foco em caso de superaquecimento, rajadas de vento e falhas no mecanismo de escoamento do fluido (KALOGIROU, 2009).

Os mecanismos podem ser divididos em (KALOGIROU, 2009):
- mecânico
- sistemas eletro-eletrônicos (maior confiabilidade e acuidade)
 - mecanismos baseados em sensores que detectam a magnitude da iluminação solar para controlar o motor que posiciona o coletor
 - mecanismos baseados em sensores que medem o fluxo solar no receptor
 - rastreamento “virtual”

O rastreamento “virtual” dispensa os sensores utilizados no rastreamento tradicional e opera baseado em um algoritmo matemático que calcula a posição do sol em função da data e hora e da localização (coordenadas de latitude e longitude) da planta (KALOGIROU, 2009).

1.2 – COLETOR FRESNEL

Os coletores Fresnel têm duas variações: o coletor Fresnel de lentes e o refletor linear Fresnel. O primeiro consiste de um material plástico transparente de modo a concentrar os raios a um receptor, enquanto o segundo é formado por uma série de tiras planas lineares de espelho (vide esquema na Figura 10 e fotos na Figura 11) (KALOGIROU, 2009).

O refletor linear Fresnel pode ter diferentes arranjos. Os espelhos podem ser alinhados como uma parábola. Outro arranjo possível é a disposição das tiras de espelho no chão (ou em outro terreno plano) e a luz ser concentrada em uma receptor linear montado em uma torre. (KALOGIROU, 2009)

Uma desvantagem do refletor linear Fresnel é o cuidado necessário no projeto para evitar que um espelho cause sombra em outro, aumentando o tamanho da área a ser ocupada pela planta (KALOGIROU, 2009).

Os modelos Fresnel não são ainda uma tecnologia madura e a maior parte das plantas existentes no mundo são plantas piloto, com algumas poucas plantas comerciais de baixa potência (de 1 a 5 MW) em operação nos EUA e na Espanha (KALOGIROU, 2009).
GERAÇÃO HELIOTÉRMICA

Figura 10 – Desenho esquemático do refletor linear Fresnel

Figura 11 – Refletor Fresnel

1.3 – DISCO PARABÓLICO

O disco parabólico é um concentrador de foco pontual, (vide esboço na Figura 12 e foto na Figura 13). O disco rastreia o sol em dois eixos, e assim é capaz de apontar diretamente para o sol desde o nascer até o poente (KALOGIROU, 2009).
Por possuir uma concentração pontual e sistema de rastreamento em dois eixos, o disco parabólico possui as maiores taxas de concentração (600 a 2000) e por essa razão é o coletor mais eficiente. Consequentemente, atinge temperaturas mais altas (de 100ºC a 1500ºC), atrás apenas da torre de concentração (que pode atingir até 2000ºC) (KALOGIROU, 2009).
O disco pode operar de forma independente (indicado para uso em regiões isoladas) ou como parte de uma planta composta por vários discos (KALOGIROU, 2009).

Os raios solares incidem sobre a parábola e são concentrados no ponto focal da parábola, onde aquecem o fluido circulante. Esse calor pode ser usado de duas maneiras (KALOGIROU, 2009):

- ser transportado por tubulação para um sistema central;
- ou ser transformado diretamente em eletricidade em um gerador acoplado diretamente no receptor (o mais comum é que o gerador opere de acordo com o ciclo Stirling, apesar de existirem outras configurações possíveis. Por esta razão o concentrador em disco também é chamado de dish-stirling.

O segundo modelo é o mais comum. Em geral é mais interessante tanto técnica (devido a perdas térmicas) quanto economicamente gerar eletricidade em cada disco, do que conduzir o calor de cada disco até um sistema de geração central (KALOGIROU, 2009).

À guisa de exemplificação, a Tabela 5 apresenta algumas características do modelo disco parabólico da EuroDish.

<table>
<thead>
<tr>
<th>Tabela 5 – Características do modelo EuroDish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro do concentrador</td>
</tr>
<tr>
<td>APERTURE</td>
</tr>
<tr>
<td>Distância focal</td>
</tr>
<tr>
<td>Taxa de concentração média</td>
</tr>
<tr>
<td>Capacidade elétrica bruta</td>
</tr>
<tr>
<td>Capacidade elétrica líquida</td>
</tr>
<tr>
<td>Refletividade</td>
</tr>
<tr>
<td>Fluido de trabalho</td>
</tr>
<tr>
<td>Pressão do gás</td>
</tr>
<tr>
<td>Temperatura do receptor e do gás</td>
</tr>
</tbody>
</table>

Dados: DGS (2005)

1.4 – TORRE CENTRAL

Um campo de coletores de heliostatos é composto de vários espelhos planos (ou levemente côncavos), capazes de rastrear o sol em dois eixos, e que reflete os raios do sol na direção de um receptor central, instalado no alto de uma torre, sendo assim, esse tipo de planta é conhecida como torre de concentração (KALOGIROU, 2009). A Figura
14 apresenta um esboço de uma planta de torre de concentração e a Figura 15 mostra uma vista aérea de duas plantas na Espanha.

Cada heliostato é composto por quatro espelhos instalados no mesmo pilar, com área refletora total de 50 a 150m² (KALOGIROU, 2009).

O calor concentrado absorvido no receptor é transferido para um fluido circulante que pode ser armazenado e/ou utilizado para produzir trabalho (KALOGIROU, 2009).

A torre de concentração possui algumas vantagens (KALOGIROU, 2009):
- os espelhos coletam a luz solar e a concentram em um único receptor, minimizando assim o transporte de energia térmica;
- assim como o concentrador em disco, por concentrar os raios solares em um único receptor central e por rastrear o sol em dois eixos, possui altas taxas de concentração, de 300 a 1500, menor apenas que o disco;
- indicados para sistemas de maior porte (de 10 MW para cima).

Figura 14 – Esboço de uma torre de concentração
Fonte: DGS (2005)
Figura 15 – Foto das torres de concentração PS10 e PS20 na Espanha
Fonte: ABENGOA (2012)
CAPÍTULO 2 – SISTEMAS TÉRMICOS SOLARES

2.1. – PLANTAS DE CONCENTRADORES PARABÓLICOS

Para a geração de calor a temperaturas acima de 150°C é indicado o uso de concentradores, pois sistemas sem concentradores ou com baixa taxa de concentração não são eficientes (tanto térmica quanto economicamente) (DGS, 2005).

A demanda por calor de processo é mais comum entre as faixas de 80 a 250°C e de 900 a 1500°C. Aplicações de baixa temperatura de processo (80 a 250) eram responsáveis nos primeiros anos de 2000 por uma demanda de cerca de 300 milhões MWh na União Européia (equivalente a 8% da demanda por energia final) (DGS, 2005).

Os sistemas industriais ligados aos coletores concentradores não diferem muito de sistemas convencionais que geram calor de processo. A peça chave do sistema é o campo de coletores e o arranjo dos coletores no solo ou em terraços de edifícios. Um fluido de calor circula pelo campo. Ao medir a temperatura do fluido na saída do coletor, um sistema de controle regula a vazão do fluido em função da radiação. O calor ganho pelo fluido é então transferido em um trocador de calor, de onde é utilizado em algum processo industrial ou armazenado em tanques para uso posterior (DGS, 2005). Alguns arranjos possíveis são apresentados nos esboços das Figura 16 e Figura 17.
Figura 16 – Sistema colar sem e com armazenamento
Fonte: DGS (2005)

Figura 17 – Diferentes arranjos para integrar um sistema solar a um sistema convencional de calor
Fonte: DGS (2005)
O sistema de integração mais simples é o uso do calor absorvido diretamente em um processo industrial que necessite de calor. O ideal é que o sistema solar de fornecimento de calor seja instalado o mais próximo possível à demanda de calor, para evitar perdas no transporte do calor (DGS, 2005).

De acordo com (DGS, 2005), por razões econômicas esse arranjo precisa ser dimensionado de modo que o sistema sempre demande mais calor que o calor máximo gerado pelos coletores. Ademais, quanto mais tempo for demandado calor, melhor economicamente seria este arranjo, segundo o mesmo documento, (DGS, 2005), o ideal seria que a demanda de calor ocorresse continuamente ao longo de sete dias na semana. Entretanto, isso não é o padrão de demanda, e o mais comum é o funcionamento cerca de cinco a seis dias na semana e com frequentes interrupções, portanto, nestes casos é recomendado o uso de tanques de armazenamento.

O dimensionamento pode ser dividido em três tipos (DGS, 2005):
- capacidade de armazenamento de curto prazo, com capacidade de algumas horas, para atendimento das flutuações diárias;
- armazenamento com capacidade de alguns dias;
- ou sazonal.

Segundo (DGS, 2005), o melhor arranjo para armazenamento de calor é com o uso de dois tanques, um a baixa temperatura e outro a alta temperatura. Em momentos de excesso de calor, parte do calor é transferida para um fluido de armazenamento (em geral sal fundido) em um trocador de calor, que aquece o fluido do tanque mais frio e o conduz ao tanque mais quente. Em momentos de baixa radiação, períodos nublados, ou mesmo a noite, o fluido quente do tanque de armazenamento pode ser reconduzido ao trocador de calor, para desta vez transferir calor ao sistema de geração de trabalho.

O Esboço de um sistema solar de geração de energia elétrica e com tanques reservatórios é apresentado na Figura 18. Para a geração de eletricidade é utilizado um bloco de potência composto por uma turbina a vapor, gerado a partir do calor absorvido pelos coletores.

Outro arranjo é mostrado na Figura 19, no qual ao invés de um sistema de armazenamento, há uma caldeira auxiliar para complementar o calor obtido pelos coletores. A caldeira em geral utiliza combustível fóssil, entretanto nada impede,
conforme citado por DGS (2005), que seja utilizada uma caldeira capaz de operar com biomassa ou hidrogênio, evitando assim emissões adicionais de CO2.

É ainda possível um sistema que contenha tanto o sistema auxiliar com caldeira quanto o armazenamento de calor.

Figura 18 – Sistema solar de geração de eletricidade com armazenamento de calor
Fonte: DGS (2005)

Figura 19 – Sistema solar de geração de eletricidade com caldeira auxiliar
Fonte: DGS (2005)
Outra configuração possível é o aquecimento direto da água nos coletores (conforme Figura 20), gerando vapor (à alta pressão e cerca de 400°C) sem a necessidade de um fluido de transferência de calor nem de um trocador de calor. Este arranjo economiza em equipamentos e em fluidos, entretanto possui algumas desvantagens técnicas em função do escoamento bifásico e é menos usado na prática por enquanto (DGS, 2005 e KALOGIROU, 2009).

Figura 20 – Sistema solar de geração de eletricidade (geração de vapor diretamente nos coletores)
Fonte: DGS (2005)

As configurações até agora apresentadas, com as devidas adaptações, servem para integração de qualquer que seja o tipo de concentrador com os demais equipamentos industriais. Entretanto alguns modelos de torre concentradora são detalhados a seguir.
2.2. – PLANTAS DE TORRE CONCENTRADORA

Nesse sistema, centenas ou até milhares de refletores são posicionados em torno de uma torre central. Cada refletor rastreia o sol de modo a refletir a radiação ao receptor central (DGS, 2005).

O calor concentrado absorvido no receptor é transferido para um fluido circulante que pode ser armazenado e/ou utilizado para produzir trabalho. O fluido pode ser (KALOGIROU, 2009):
- de transferência de calor;
- água para operação de uma turbina a vapor (ciclo Rankine);
- ou ar para operação de uma turbina a gás (ciclo Brayton ou combinado).

São três as configurações do sistema coletor/receptor (KALOGIROU, 2009):
- os heliostatos estão em volta da torre em 360° e o receptor é cilíndrico e com o trocador de calor localizado na superfície externa da torre;
- os heliostatos ficam a norte (no hemisfério norte ou sul no hemisfério sul) da torre e o trocador de calor é interno a torre;
- os heliostatos se posicionam em relação à torre da mesma forma que o anterior, mas o receptor é um plano vertical com um trocador de calor externo apenas na face direcionada para os heliostatos.

O sistema de transporte de calor consiste basicamente de tubulações, bomba e válvulas e direciona o fluido de transferência de calor em um circuito fechado entre o receptor, o armazenamento e o sistema de geração de trabalho (KALOGIROU, 2009).

Assim como apresentado anterior, o uso de um sistema de armazenamento térmico capaz de guardar a energia térmica para utilização em outro instante no sistema de geração de trabalho, desacopla o sistema de captação de energia solar da conversão para trabalho/eletricidade (DGS, 2005; KALOGIROU, 2009).

A Figura 21 apresenta o esboço de uma planta de geração elétrica de torre de concentração. A torre aquece ar em ciclo aberto, podendo ou não haver um queimador adicional, que vaporiza água em um trocador de calor para operação de uma turbina a vapor. Enquanto na Figura 22, o ar é pressurizado dentro do receptor e utilizado para operar uma turbina a gas em um ciclo combinado para geração de eletricidade.
Ao invés de ar, o fluido aquecido dentro da torre pode ser um fluido de transferência de calor e ser integrado ao restante da planta de modo similar aos apresentados nas Figura 16 a Figura 19, ou diretamente água como na Figura 20 (DGS, 2005; KALOGIROU, 2009).

Figura 21 – Torre de concentração de receptor aberto (fluido aquecido: ar)
Fonte: DGS (2005)

In general, electrical efficiencies of combined cycles are higher (in the range of than steam cycle efficiencies (about 35%). The integration of solar thermal ene into combined cycle processes allows solar-to-electric efficiencies of more than

Figura 22 – Torre de concentração de receptor de volume fechado e pressurizado (fluido aquecido: ar)
Fonte: DGS (2005)
2.3. – CAPACIDADE DE ARMAZENAMENTO E OPERAÇÃO DE UMA PLANTA SOLAR

Quanto ao dimensionamento da planta, para o mesmo tamanho do campo de concentradores solares, a proporção entre o campo, os tanques de armazenamento e a turbina do bloco de potência podem variar em função da aplicação e do regime de operação desejados.

A partir de um campo solar pré-definido e para uma mesma produção de eletricidade, IEA (2010) apresenta quatro plantas hipotéticas. Na primeira, Figura 23, supondo uma baixa capacidade de armazenamento e uma turbina de 205MW, a planta geraria eletricidade aproximadamente das 8:00 horas as 19:00 horas, tendo sido classificada por IEA (2010) como uma planta de carga de geração intermediária.

Uma segunda planta, com reservatório de médio porte e mesma turbina que a anterior, poderia deslocar sua geração de eletricidade acumulando energia no tanque durante as primeiras horas de sol e assim gerar energia das 12:00 horas as 23:00 horas, por exemplo (vide Figura 24).

![Figura 23 – Planta solar para operação em carga intermediária](image)

Fonte: IEA, 2010
Para operação na base, seria necessária grande capacidade de armazenamento, e a turbina seria de menor porte (no exemplo, 120MW, menos da metade das anteriores). Com esta configuração, a planta operaria 24 horas por dia, conforme pode ser visto na Figura 25.

Também com o mesmo grande reservatório, porém com uma turbina bem maior, de 620MW, a planta seria capaz de gerar uma grande quantidade de energia em curto espaço de tempo e unindo o calor absorvido com o armazenado no tanque, geraria eletricidade das 11:00 horas as 15:00 horas, conforme Figura 26.
Figura 26 – Planta solar para operação no pico
Fonte: IEA, 2010
CAPÍTULO 3 – PLANTAS SOLARES NO MUNDO

Aliado aos investimentos em P&D, EUA e Espanha possuem leis de incentivo ao setor e isenções fiscais que contribuíram para que estes países sejam hoje referência no setor, com as maiores e mais modernas plantas em operação comercial e com diversos empreendimentos em construção e em fase de planejamento.

As primeiras plantas solares a comercializar sua eletricidade foram as SEGS, na Califórnia. As SEGS começaram a entrar em operação em 1984 (SEGS I) e a última delas no início dos anos 1990 (SEGS IX). As SEGS correspondem a cerca de 350MW de potência instalada, quase 80% da capacidade instalada no estado. Estas plantas, foram resultado direto do PURPA, que foi um modelo de tarifação que garantia um valor pré-fixado de compra de energia renovável (TAYLOR, 2008 e WISER et al., 2011).

A capacidade instalada no mundo de concentradores solares é cerca de 1.303,78MW, dos quais mais de 1.250MW são de concentradores parabólicos e quase todas as plantas localizadas nos EUA e na Espanha. As Tabela 6 a Tabela 9 apresentam as plantas em operação no mundo, de acordo com a tecnologia, disco, fresnel, concentrador parabólico e torre, respectivamente, assim como a potência instalada de cada planta e o seu país.
Em junho de 2010, de acordo com SUN & WIND ENERGY (2010), a Espanha possuía quase 1.000 MW de potência instalada em construção, enquanto a Califórnia possuía menos de 300MW, mas com plantas em planejamento (sem previsão de inauguração) totalizando mais de 10.000MW.

Tabela 6 – Plantas de concentradores de disco parabólico em operação no mundo

<table>
<thead>
<tr>
<th>Planta</th>
<th>Potência Instalada (MW)</th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aznalcollar TH</td>
<td>0,08</td>
<td>Espanha</td>
</tr>
<tr>
<td>ESI</td>
<td>0,01</td>
<td>Espanha</td>
</tr>
<tr>
<td>EuroDish Almeria I</td>
<td>0,01</td>
<td>Espanha</td>
</tr>
<tr>
<td>EuroDish Almeria II</td>
<td>0,01</td>
<td>Espanha</td>
</tr>
<tr>
<td>EuroDish Sevilha</td>
<td>0,01</td>
<td>Espanha</td>
</tr>
<tr>
<td>Maricopa Solar Plant</td>
<td>1,5</td>
<td>EUA</td>
</tr>
<tr>
<td>Total em operação</td>
<td>1,62</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: SUN & WIND ENERGY (2010)

Tabela 7 – Plantas Fresnel em operação no mundo

<table>
<thead>
<tr>
<th>Planta</th>
<th>Potência Instalada (MW)</th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kimberlina Solar Thermal Plant</td>
<td>5</td>
<td>EUA</td>
</tr>
<tr>
<td>PE1 (puerto Errado 1 Thermosolar Power Plant)</td>
<td>1,4</td>
<td>Espanha</td>
</tr>
<tr>
<td>Total em operação</td>
<td>6,4</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: SUN & WIND ENERGY (2010)

Tabela 8 – Plantas de concentradores parabólicos em operação no mundo

<table>
<thead>
<tr>
<th>Planta</th>
<th>Potência Instalada (MW)</th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvarado I*</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Andasol 1</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Andasol 2</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Archimede*</td>
<td>5</td>
<td>Itália</td>
</tr>
<tr>
<td>Central Solar Termoelétrica La Florida*</td>
<td>49,9</td>
<td>Espanha</td>
</tr>
<tr>
<td>Colorado Integrated Solar Project (Cameo)*</td>
<td>2</td>
<td>EUA</td>
</tr>
<tr>
<td>Extresol 1</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Extresol 2 (EX-2)*</td>
<td>49,9</td>
<td>Espanha</td>
</tr>
<tr>
<td>Holaniku at Keahole Point*</td>
<td>2</td>
<td>EUA</td>
</tr>
<tr>
<td>La Dehesa*</td>
<td>49,9</td>
<td>Espanha</td>
</tr>
<tr>
<td>La Risca</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Majadas I*</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Planta</td>
<td>Potência Instalada (MW)</td>
<td>País</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Manchasol-1 (MS-1)*</td>
<td>49,9</td>
<td>Espanha</td>
</tr>
<tr>
<td>Martin Next Generation Solar Energy Center (MNGSEC)*</td>
<td>75</td>
<td>EUA</td>
</tr>
<tr>
<td>Nevada Solar One</td>
<td>75</td>
<td>EUA</td>
</tr>
<tr>
<td>Palma del Río II*</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Puertollano</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Saguaro Power Plant</td>
<td>1,16</td>
<td>EUA</td>
</tr>
<tr>
<td>Solar Electric Generation Station (SEGS I-IV)</td>
<td>350</td>
<td>EUA</td>
</tr>
<tr>
<td>Solnova 1</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Solnova 3</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Solnova 4</td>
<td>50</td>
<td>Espanha</td>
</tr>
<tr>
<td>Total em operação</td>
<td>1259,76</td>
<td></td>
</tr>
</tbody>
</table>

Fontes: SUN & WIND ENERGY (2010)
* NREL (2011)

<table>
<thead>
<tr>
<th>Planta</th>
<th></th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS10</td>
<td>11</td>
<td>Espanha</td>
</tr>
<tr>
<td>PS20</td>
<td>20</td>
<td>Espanha</td>
</tr>
<tr>
<td>Sierra Sun Tower</td>
<td>5</td>
<td>EUA</td>
</tr>
<tr>
<td>Total em operação</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Fontes: SUN & WIND ENERGY (2010)
CAPÍTULO 4 – CUSTOS E PERSPECTIVAS

Segundo ARVIZU et. al. (2011) dados de custos de CSP são limitados e altamente dependentes de características de cada planta, como a existência ou não de armazenamento de calor (e a capacidade de armazenamento), e de hibridização (e qual a participação desta na geração total da planta).

Os sistemas de armazenamento de calor aumentam os custos de investimento, não apenas em função dos equipamentos e fluidos necessários para o armazenamento, mas também por demandarem maior área de coletores para absorver o calor adicional. Em contrapartida, aumentam o fator de capacidade da planta e elevam a produção anual, impactando assim no custo nivelado da energia.

Os custos de investimento de plantas CSP de cilindro parabólicos, de acordo com EIA (2010), estão em torno de 3,82 USD/kW instalado para plantas sem armazenamento e 7,65 USD/kW para plantas com armazenamento.

De acordo com ARVIZU et. al. (2011) o custo nivelado em 2009 de uma planta CSP de cilindros parabólicos com armazenamento com capacidade para funcionar sem sol a plena carga durante 6 horas era em torno de 200,00 a 300,00 USD/MWh. EIA (2010) estima custo nivelado para diferentes taxas de desconto, de 180,00 a 270,00 USD/MWh para variadas radiações e capacidades de armazenamento, porém sem especificá-las (vide Figura 27).

![Figura 27 - (a) Custo nivelado em função do FC e do custo de investimento; (b) Custo nivelado em função do FC e da taxa de desconto. (Fonte: ARVIZU et al., 2011)](image)

O Ministério de Minas e Energia, através de nota técnica da EPE (2012), considera os custos das tecnologias CSP ainda incompatíveis com o mercado elétrico
brasileiro e, portanto, não faz projeções de entrada de plantas CSP no curto prazo na matriz nacional.

Entretanto, o governo dos Estados Unidos ao investir em P&D e incentivar os empreendimentos de CSP, traçou, através do seu departamento de energia (DOE, 2011), metas de redução do custo nivelado das plantas CSP:

- de 60 a 80 USD/MWh, com 6 horas de armazenamento, em 2015;
- de 50 a 60 USD/MWh, com 12 a 17 horas de armazenamento, em 2020.

Para ARVIZU et. al. (2011) a queda dos custos de CSP não é meramente uma questão de tempo e afirma que ainda são necessários investimentos em P&D (acarretando em curvas de aprendizado), economias de escala devido ao crescimento do mercado e menores custos de acesso ao capital. Ao considerar essas medidas (vide Figura 28), ARVIZU et. al. (2011) estima reduções dos custos nivelados em relação aos custos atuais (2012) de:

- 5 a 30% em 2015;
- 35 a 50% em 2020;
- 40 a 55% em 2025.

Figura 28 - Expectativas de queda no custo nivelado de CSP em função de economias de escala, aprimoramento da tecnologia e ganhos de eficiência.

(Fonte: ARVIZU et al., 2011)
Outros estudos também apontam perspectivas de avanços tecnológicos e de queda nos custos, como FTHENAKIS et. al. (2009) que estima custos nivelados de 170 USD/MWh em 2015 e 130 USD/MWh em 2020 para plantas CSP que operem no pico e 80 USD/MWh em 2020 para plantas com grande capacidade de armazenamento e, portanto, capazes de operar na base do sistema. VIEBAHN et. al. (2011) faz simulações para casos específicos na Espanha e na Argélia e estima que os custos nivelados em 2050 podem atingir faixas de 42 a 57 euros/MWh.
REFERÊNCIAS

DUTRA, 2007. Propostas de políticas específicas para energia eólica no Brasil após a primeira fase do PROINFA. Tese de doutorado. PPE/COPPE/UFRJ.

Brasileira. Empresa de Pesquisa Energética, Ministério de Minas e Energia, Brasília,
Brasil.

FTHENAKIS, V.; MADSON, J.E.; ZWEIBEL, K., 2009. The technical, geographical,
and economic feasibility for solar energy to supply the energy needs of the US. Energy
Policy, n. 37, p. 387-399.

GLOBAL NEVADACORP, 2011. Global NevadaCorp – Las Vegas Corporate

Agency.

KALOGIROU, S. A., 2009. Solar energy engineering: processes and systems. 1ª edição,
Academic Press, Elsevier, EUA.

LODI, C., 2011. Perspectivas para a Geração de Energia Elétrica no Brasil Utilizando a
Tecnologia Solar Térmica Concentrada. Dissertação de M.Sc., Universidade Federal do

Science n° 304, p. 1114-1115.

MINISTERIO DE CIENCIA E INNOVACIÓN, 2011. La Plataforma Solar de Almería
(PSA), Gobierno de España. Disponível em: www.psa.es/webesp/index.php Acessado
em: mar/2011

Boletín Oficial del Estado 1998 n. 312, Espanha. Disponível em:

